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ABSTRACT

An analysis of the electromagnetic coupling between two arbitrarily

oriented dipoles through planar multilayered shields is made. This method of

approach is based on the plane-wave spectral representation of radiation fields [1]

and the use of transformation matrices for multilayered media. Numerical

results are found to be in good agreement with the experiuntal data obtained in

the frequency range from 10 kHz to 1 MHz.
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1. INTRODUCTION

It is well-known that an arbitrary field can be represented in terms of its

plane-wave spectral representation. In this paper, we employ this represen-

tation to express the incident and scattered fields from multilayered media as

follows

E(x,y,z) - ff ff(a,S) ej( ax+ sy + yz) dado (1)

H(xy,z) - ff ff(ct,S) eJ(ax+ oyy z) dodo (2)

where y - a - , k - w/p- and - on top indicates Fourier transform. For

a plane wave that is incident on the boundary between two media from an

arbitrary direction, it is possible to find a matrix relationship between the

fields in the two regions separated by the boundary. The matrix may be termed

the transformation matrix and will be very useful for our analysis. In order to

simplify the representation of the transformation matrix, it is useful to

resolve the incident wave into two components, one parallel to the plane of

incidence, and the other perpendicular to the same. These two components will

be denoted by subscripts (I - parallel, i - perpendicular), propagate indepen-

dently, and remain uncoupled throughout the processes of reflection and

transmission at the interface between dissimilar media. Hence, the transfor-

mation matrix for the fields expressed in terms of the parallel and perpen-

dicular components (to the plane of incidence) becomes diagonal.

7. A.



2. TRANSFORMATION MATRIX [T] FOR PLANE WAVES

In this section, we first derive the transformation matrix for a single

interface between two dissimilar media. The extension to the multilayered case

is considered later. Let us define two reference planes that are parallel to

the boundary at Z - 0, namely, plane 1 and plane 2, as shown in Fig. 1. The
1, an ie l2  2G

waves E and E are at plane 1, and E and E are at plane 2. The G sign

indicates waves propagating in the +z-direction, whereas the e sign indicates

waves propagating in the opposite direction.

Next we resolve the incident electric field of the incident wave into the

parallel and perpendicular components. Figures la and lb illustrate the

geometry of propagation of the perpendicular and parallel components, respec-

tively. The boundary condition that must be satisfied on the interface between

the two dissimilar media is that the tangential components of the fields E and H

be continuous. Enforcing these conditions we get

E* Jr Ed2  e -e - r~d d2  E- j r2d2  jr 2-H eJrd 1 + le e 2 c +d2 e ca sr d 3e 2

-H cos + He cose 1  2 H e- j r 2d 2  Cos

(4)

where d and d2 are distances of the terminal planes from the interface, and

01 and 82 are the angles between the directions of propagation and the normals

of the interface, as shown in Fig. 1. Therefore, we have

" (2 2 82

Cos 1, - (5)

Sq/k _> 2 _2

Cos 2 2 (6)rw2 k1 r72y

2
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Note that the phase factor ejkr is assumed here. Rewriting Eq. (4) and using

H - /'eTP E, we obtain

( 1- (e jr 1 d1 - Ele Jrld 1) cos 81 (E e r2  - E ej r 2d 2) Cos 82

(7)

Multiplying Eq. (3) by V'i/ 1 Cos 1) and subtracting from Eq. (7), we have

1i J 1  E 2  - j r2d2( 2
2E1  e _ Cos 8 - e E Cos 81 + - CB

+ E er2d2 cos 81 - cos 82) (8)

Similarly, multiplying Eq. (3) by cos 01) and subtracting from Eq. (7),

we have

.0 9 -r e -r d ( E ,2E1  erd 1 1 cos 81 E20 e~ 2 2)Cs6 o1J 2)11

+oE e - cos 81 - .- cos 02)

From Eqs. (8) and (9), we obtain

El isi
1 1

[T] (10)E I E i

VLEI iT EEJ
where

.14
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e- j 2 d2-j r 1d 1 2eo (7 j r 2d 2- j r d 1

1 2 21

E
[TI J.

C -cCo - U 1 2
11~2~ -jr d +jr d1  -r cas +j/ Ul • /W2 -Jr~2+Jldle~r 2d2+irldl

2 2-ae 2 1-cas2e1 12 Cos aI  2/ - Cos I .

1E 1

(11)

E

The matrix [T] is termed a transformation matrix for the perpendicular com-

ponents of the electric field.

In a similar manner, we can derive the transformation matrix for the

parallel components of the electric fields, which is given by

[T] (12)

where

:5:

.
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/2 Cos 81//Ij Co -2 cos d o 6

2- 1 1 T7---114......* e. j-- r- 2 d -

.4 l

4£

2 cos = 2 cose , cose, cos 
d17 c /2 E

2 c e2 -jr 2d2  
+ j r d1  d 1 2 Cos _ _jr_2_d2_ 

jr2d2-ir d1

/ Cos 0 U cos8

(13)

E

: These matrices [T] Iand [T] Iare used to calculate the coupling between two

f magnetic dipoles. For the coupling between two electric dipoles, it is

necessary to find the transformation matrices for the magnetic field, namely,
a H

I and [T] . It is evident that Fig. l(a) also describes the propagation for

-cs 1 2-oe J
the parallel components of the magnetic fields, and Fig. l(b) the perpendicularHE H

co Theseematricesh[Tiaandt[T]f aredusedith calculatend he couplin beteen two3

neceSsardfl to findtha the transformation matrices for magnetic ed aey

H H

-; = T] (14)

'"TI adJ . i vdnJhtFg ()as ecie h rpgto o
H, . 1 1 H2

* %*

cS- o Ag

4- r (S

'ai sntdfiutt hwta hetasomto arcsfrmgei
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where

Sc /2 - cose cos d- cos
-1 22_2 -Jr2 d 2 -Jrldl / 1- Jr 2d 2-jrld 1

e ,e

2 cos 2 cos 1

H
[TI -

i2
Cos I- Cos Cosa1 +  2 Cos 2

-e8 -cs 2  £ 1 £ 2
Se-j r2 d2+j r1 d I ejr2d2 j  I

2 Cos 2 2 Cos jd

(16)

and

2 It£I cosc 2 - i- c 2

£2 -j r2d2-j r d cos cos ejr 2d2-jr d

2 Cos 1  2 1- Cos1

H
(T]

I

cos o1- cos 82 - cos + - cose 2

2 e-j r2 d2 Jr+j r d £1 2 jr d2+jr d

71 
e1

2 - cose1 2 cos91

H 
H

The matrices [TI and [TI can be identified as the transformation matrices

1 3
for the perpendicular and the parallel components of the magnetic fields,

respectively.

7
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FIN. .. . . . . . . . . . . .

Having derived the matrices for a single interface between t dissimilar

media, we now proceed to generalize the analysis for the case of multilayered

media. Suppose we have n different media and (n - 1) boundaries as shown in

Fig. 2. From the preceding results, we have

W ] = [T]2,3

W(i- = [TI 2  i

W .

n-1, = (Tnl,nn9

where W stands for the waves propagating in the +z-direction in the

i t h medium, and W stands for the waves propagating in the -z-direction in the

i t h medium, i.e.,

W E " io ,E H , or H i - 1, 2, 3, n

IG I I iG

W ie E i, E, H i, or Hie i - 1, 2, 3, . n

We obtain the following results:

= 1- [ 4 r , n .n 
( 1 8 )

.,,, 8



Eni*L- EnS

Wie moll W2 jGe wie W (n-oe Wn

Figure 2. Multilayered media.



where

[T, n  [TIl, 2 [T]2, 3 ... [T]n-l, n  (19)

The matrix [T]I can be termed the transformation matrix for the N-layer1 ,n

medium.

It is obvious that the transformation matrices only depend on the direc-

tions of the waves, the constitutive parameters of the media, and the locations

of the terminal planes. For the lossy medium, all of the above formulas are

still applicable, provided we replace e by (e' + je").

10
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3. SPECTRAL REPRESENTATION OF THE RADIATION FIELDS

The fields due to a z-oriented electric dipole located at (x',y',z') can be

derived from a z-oriented electric vector potential Az , which satisfies the

equation

72 A + k2 A - -Idit (x - x') 6(y - y') 6(z - z') (20)Z Z

* where Idt is the dipole moment of the electric dipole. Equation (20) can be

solved via the Fourier transform technique to yield (see Appendix I)

(xyz) fId e j a(x-x')+B(y-y')+Y(z-z')J dad (21)z 2 /k _a2 _ 2A~(x~~z - - . e ada(1

From Maxwell's equation we have

H -Az E 1 gHX A z  E=

-y x
j we 3z ax

3A I 2A
H -zE (22)y ax y jwe 3z3y

1 2A

E -j wU~A + --

Zz z j we az2

Therefore, the various field components for a z-oriented electric dipole are

given as follows

11



Idt -L---- Jbx(x-x')+(y-y')+Ylz-zI]dl

ExM dlf - a J[axx 2+ j(-x' )+ z-')y - J dda B 23

EyMIdl f~ a' J [a(x-x' )+ O(y-y')+Ylz-z'I dci (23)
X 8w 2 _ w

E - A&7-(a i[ + 2 1(x-x'+y' )+Y~zzI Zd Z

8w 2 _00 2 a2 2

where

Similarly, we can derive the various field components for an X-oriented

electric dipole as follows

H -d f -e ' c(x-x' )+O(y-y I)+y I Z-z' d ad 0

8w 2-

H0 -(k 28

Ex -( -d f) ej[I (x-x')+ S(Y-Y')+YI Z-Z dI d i
8w 2 wwV2_a 2(24)

EyaIdl f' g ej Ia(x-x')+s(y-y' )+YIz-z'I I dodo
8w-2Ern 2--

E d- ( {f-:2 eJ 1 (x-x')+ O(Y-Y')+Y z-z'
8W -

12



From duality, we know that

7 - Id +kd
-+ kdg I+ Idt + C (25)

where kdX is the dipole moment of the magnetic dipole. Consequently, the

various field components for the magnetic dipole can be obtained directly from

those of the electric dipole upon application of the duality principle.

The various field components for the z-oriented magnetic dipole are

kdt f f - 2 eJ [a(x-x')+$(Y-y')+Ylz-z'tI d ad

x 8 w 2 -

E kdg X f e ifa(x-x')+O(Y-Y')+Ylz-z'l] duadS
y 8 _. f ' '2 _ m2 S2

ux ~kdz -m yf e 3 [ Q(x-x' )+S(y-y' )+Yjz-z'II duds (26)

8W d

H .!d1 f-S eJ [a(x-x')+B(y-y')+ylz-z' lj ddi

y 8w - -

-'Z 8w- (pk2 _a2 02

Likewise, the components for the x-oriented magnetic dipole are given by

13
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E edtJ(c(x-x')+$(y-y')+Yiz-zf 11 ad
Z 8 w C2 M2

x kdXt f d -J (k 2  a ~2 eja(xx' )+S(Y-Y')+y Z-Z' dII (7

H - jtcz$- e (x-x' )+ S(y-Y')+Y z-z' d cB

-Z kdX f 7ZJ-t ej Ia(x-x')+$(Y-Y')+Ylz-z' 11 dodB
2 8w 2 wu.

414



4. NUMERICAL COMPUTATION

4.1. Collinear Magnetic Dipoles (or Small Coaxial Loops)

Suppose we have two z-oriented collinear magnetic dipoles separated by a

shield. Loop I is a transmitting antenna placed at the origin of Cartesian

coordinates (0,0,0), whereas Loop 2 is a receiving antenna at the point

(0,0,z ), as shown in Figure 3.

Letting the terminal planes at z - 0 and z = z, respectively, the incident

electric fields E1x, E1  for the magnetic dipole at the plane I are,x y

E IO(x,y,0) _ Ld fe =+y dad8
X 8w2

(28)kd. __ __ _ ej (o c-I)

4E 19(x'y,0) -W f ae(LB)dd
8wi

From the matrix Eq. (A.12) in Appendix 2, we obtain

EiiO 1L2 + S ' /2+S 'l

(29)

_-l _ 2 2 ,

k/'T+ ' l + :

and

4'.'
E0(x~y,O) _ kdX So a/2-2 + 122 e(WC+lBY) dad a

8 2 - _f 2  _ 1

(30)

E (x,y,O) - 0

This result shows that the direction of every incident electric field at plane 1

is always perpendicular to its plane of incidence, because the electric field of

15
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x I

7I

Loop I Loop 20z
Zo

plane I plane 2

.Figure 3. Two coaxial loops separated by a shield.
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the z-oriented magnetic dipole in the cylindrical coordinates (p,O,z) has the

one #-component.

Let

W E19-9 i (31)

Finally,

11
El E (32)

E EL ER

where T1  is the first element of the matrix [T] which is [T] L-TI . The
1ELi i

matrix [T] is the transformation matrix for tee left boundary, whereas
ER I

the [T]I is the one for the right.I
Therefore, one may obtain the field at plane 2

E 2(x,Yz 0 ) kd _ eJ ( ° + Oy ) dodo (33)
TI -) - 8-2

In order to find the magnetic fields received by loop 2, it is necessary to

transform the E. into the components E and E2 * From the matrix Eq. (A.13)±x y

in Appendix 2, we obtain

xi2 E,7 ~
El

(AM)

and

17
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-T77-1 T 7 7... 7 '-.- 74

'o

Ex39(xYzo kdt -B ejCx+ lBy) dod
x 0  2 ff e €d2 2

TII ---

(34)

E 2E(xyZ0 kdX ff a e ( ° x + BY) dcd
y 0 8w 2 _ww2_' )

It is obvious that the z-oriented magnetic dipole placed at the z-axis can

only couple the z-component of the magnetic field. From Maxwell's equation we

have

Hz - - .-. ] (35)

and

_2 2)

H (xy Z) . 1 -(ff e j ( a " ) dodo (36)

In order to evaluate this integral, let us make the following

*substitutions [2]:

(: - ICos X x- P Cos
(37)

- sin y p sin

E

It is worth noting that the first element T of the matrix [T] is only a func-I

tion of X and independent of , because the factors contained in the matrix

become

8 2_ a2 2 2_ 2
CosC kk

(38)

Hence, one can separate the above double integral and obtain

18
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H Cos ) wH (p, *,z O) "j -f Ad% A eiPdOS
z 0 2 f 0

8w ciii 0 T1

- 1w f - 3  1 o(pA) dA (39)
8wu 0 V

Making another substitution

X - sin C (40)

we have

Z '0 8ww (p~kdz -2wk 3 sin 3 C o sin ) d(H Z(0,0,z 0) - f • k i )d (41)

1c TL

where c is a contour in the complex C-plane, as specified by the transformation

A - k sin C. In this case, the magnetic dipole is placed in the free space, so

k is real. Let k - k'. Then

A - A' + JA" - k' [sin C' chc" + j cos C' shC"] (42)

It is easy to show that the mapping of Eq. (34) transforms the quadrants of the

A-plane into parallel strips of width w/2 radians. The path of the integrands

in Eq. (39), that runs from A - 0 to A - +- in the right-half plane, is now

transformed into the path c, as shown in Fig. 4.

4
*1
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Figure 4. Contour transformation.
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Finally, we have

-k 3kd) f sin 3 d;' • Jo(kpsin i') d1'H z(P'O'z0) =4wwp 0 10(pi ;

TL (cos )

f ch3 " J0(kp chC") d ") (43)

T 1 1(sh ")

The magnetic field received from the z-oriented magnetic dipole placed

along the z-axis is

-k 3 kdit 2 sin3 d ' - ch3 "
Hz (0,0,z 0 ) 2n-p f d - f 4 dC" (44)

0 i O IT1 -(CosJ T (sh")

If the shield is removed, it becomes a free space. From Eqs. (26), the com-

ponent of the magnetic field on plane 2 is obtained

H (xYz kd f -(a 2) eJ(a ) ejdi-2- z O dcd8 (45)HzO(, 0Z) -'-,- . _
0 wwp A /2 _a2 82

Using the same substitutions in Eqs. (37) and (40), one may obtain

Fit
2~d e jkz~cos

( z) -k3 kd sin3%' j (kP sin 4') e d
0Z 4 u 0- ~kz0 sh ," 1

+ f ch 3 ' J 0 (kpchc") e d4" (46)

0

and r

H 0 0 2__ sin3  eJkz 0 cos d'

- f ch3% ekz0 s h " d4" (47)
0
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Let us define the shielding coefficient of the shield as

Hzo(O,O,zO )i(free space)SH - 20 log (db) (48)

IHz(0,0,z0 )I (with shield)

It can be used to describe the coupling between two coaxial z-oriented small

loops separated by the shield. The large S means that the coupling is weak.

4.2. Collinear Electric Dipole

Consider two z-oriented collinear electric dipoles separated by a shield,

as shown in Fig. 5. Invoking duality (Eq. (25)), it is possible to find the z-

component of the electric field at plane 2 directly

22 3

E (pz) -k2IdX f sin3 d j (kpsin ') dC'z''0 4w2 we 0 10
T 1 10 (cos '

-~ 3
- ch 4 J0 (kp ch,") dC") (49)

aD T.I(ShC,
)

and

k 3 Idt 2 n3

E (0,0,z2 L d d ' - dC" (50)
4T 110 (Cos ')"TI (shC")

Bu 1 is the first element of the transformation matrix for the perpendicular

But T1 1

H E

component of the magnetic fields [T] in Eq. (15), instead of [T]
I i

For free space, we have
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Figure 5. Two coaxial loops separated by a double copper shield.
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^ COS vV'-V'CT- 'r

r
E (0,Oz) =-k 3 Il sin 3  e j kz0 Cos '

f ch 3 C" e k z Os h ' d (51)
0

Similarly, we can define the shielding coefficient of the shield as

I Ezo(O,O,zO ) (free space)
SE - 20 log E(0 )jihsel) (dB) (52)E = JE z(OO'zO ) [(with shiel1d)

It describes the coupling between two collinear electric dipoles separated by a

shield.
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5. NUMERICAL RESULTS

We have two coaxial loops separated by a double copper shield. Let us com-

pute the shielding coefficient of this shield. The thickness of each shield is

(1/1000)"; the separation between the two shields is ds - (1/2)" or (1/8)"; and

the distances from the dipoles to the shields are d1 = d2 - 12", as shown in

Fig. 5.

The variations of the shielding coefficient with frequency for magnetic

dipoles, electric dipoles, and plane waves are shown in Fig. 6. Experimental

results for magnetic dipoles are also given. From these results, we know that

the copper shield, which has a very high electric conductivity, possesses a

higher shielding coefficient for electric dipoles.

It is worth noting that in the above calculation we have assumed that the

propagation direction of each of the components radiated by the dipole is always

perpendicular to the boundaries in the double copper shield (see Fig. 7). This

is because the electrical conductivity of copper is very high.
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Figure 7. The propagation direction of each of the components radiated by
the dipole.
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6. CONCLUSION

The formulas given in References i31 and (41 are only for specially

oriented dipoles, i.e., the dipoles must be perpendicular to the boundary. The

formulas are not available for arbitrarily oriented dipoles. We have already

obtained formulas for z-oriented and x-oriented dipoles. The former is perpen-

dicular to the boundary, whereas the latter is parallel. If a dipole is

oriented in an arbitrary direction to the boundary, we can always resolve the

dipole into two equivalent dipoles. One is z-oriented, and the other is x-

oriented. Therefore, the above approach can be used for arbitrarily oriented

dipoles. Furthermore, the boundary transformation matrices obtained in this

paper are also useful for the study of wave propagation in stratified media.

The method presented in this paper is simple and convenient.
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APPENDIX 1

FIELD EQUATIONS

We have

V2A + kAz - -Idt S(x-x') 6(y-y') (z-z') (A.1)z

Let

wAz(x,Y,z) -= f!f Az(a,8,) e [ a (x - x')+8(y-y')+YIz -z' I1 dci 8y (A.2)

Fourier transforming Eq. (A.1) we get

(k 2 - (a2 + 02 + Y2)) X( -y) Idt

(27r)
3

Therefore,

S ,) -Id£
A (, ,Y) - -(2i)

3 (k 2 _ (a2 + 82 + y2))

Thus the solution of Eq. (A.1) is
ra

A (x,y,z) _ .dl f 7f eJ[a(x-x')+$(Y-Y')I dcddyz8w 3 -

, _ Id f eJia(x-x')+6(yy')J do fm eJY(z-z') dy
8 3 - - c (k a2 _ 2 - 2 ) y2 d

(A.3)

Let k2 - a2 - 82- K2 , and K 2  - Then the second integral of

Eq. (A.3) becomes

- e(z-z' dy (A.4)

Applying the complex function theory to evaluate this integration, it is ev.dent

that the integrand eiy(z-z') has two poles y - ±K on the real axis in
K2 -
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the complex y-plane. From the radiation condition, we know that only one pole

is reasonable and that

y - R(cos # + jsin *)
Therefore,

leJy(z-z') I - e-R(z-z') sin ( (A.5)

Since sin * > 0 in the upper-half plane, the integrand will become negligibly

small as R increases without bound, but only if z > z'. Thus, we can take the

contour as shown in Fig. A.I. For z > z', the contour includes only one pole

(r - +K). We then obtain in the limit

% jy(z-z') er(z-z')

2 2 2 (A. J K(z-z') _ _ _ -ae a(z-Az > Z )

-leK -(z > z')

: - 0

Obviously, for z < z' the contour must be closed in the lower-half plane,

as shown in Fig. A.2. The contour includes another pole (y -K), so that

f e J Y(z-z -2wJ Res e-jr(z-z')
-a K2 - y2 K2 _2

g - 7 -  '  (A.7)

- i a 02 ) (z < z')

and for z > z' or z < z'

ejy(z-z') IM -C% jz-z' I z >Z'
f 22 dy A I__ (A.8)

- K -y or z <z

Finally, we have

_ __ eI [ a( x-x' )+ 1(yy +,2 2. 8

A(x,y,z) - d ff ,-e dauda (A.9)
8w 3 - 2 -
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APPENDIX 2

COORDINATE TRANSFORMATION

Considering the coordinate transformation from the E, Ey, E coordinate

system to the system defined by the orthogonal triad consisting of the wave vec-

tor k and vectors E and E shown in Fig. A.3 , we obtain a coordinate transfor-

mation matrix

E.i.
I Ex

TE [ R] i(A. 10)
ky

where

sin* -cos 0
[R ] "( A I )

Los *cos e, sin 0 cos 8, -sin

The final results are

*Esin* -Cos E

L cos L cos 8 , sin *cos 1

Ex sin -- E.L
Ex i cos8 I (A.13)

-" -cos * sin -J Cos cos E I

and

-in cos -sin
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C Cos * (A. 15)

sin cos L
Ez -cos sin 0 i

where

k.z 2_a2 2t2 /2_2

cos 6 = = sin 6 =
fk k k

k-x a 1

Cos *= k = 2 _sn _ 8 (A.16)

2 _ 2 + 2 +
Iki z

43

NJ

-I.'

' tI,. . " ' ' ' " ;. € . - " . . - . - . - , .- - ' . - . . , ,

'I . o ••• 
•

•
•  

- "-" ". . . ...

,, .1 . •*. •% . - • . . • % •J ,,,. ,.- , : " - -_ . . "." - -. ," -". . . • •. . . ..•. . . ._. •. ?; ' • ;: :- . ,1 2 iii.



REFERENCES

[1] P.C. Clemmow, The Plane Wave Spectrum Representation in Electromagnetic
Fields. London: Pergamon Press, 1966.

[21 G. Tyras, Radiation and Propagation of Electromagnetic Waves. New York:
Academic Press, 1969.

[3] J. R. Moser, "Low-Frequency Shielding of a Circular Loop Electromagnetic
Field Source," IEEE Transactions on Electromagnetic Compatibility,
vol. EMC-9, no. 1, March 1967.

(41 P. R. Bannister, "Further Notes for Predicting Shielding Effectiveness for
the Plane Shield Case," IEEE Transactions on Electromagnetic Compatibility,
vol. EMC-II, no. 2, May 1969.

35




